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Highest-weight U,[sl(n)] modules and invariant integrable 
n-state models with periodic boundary conditions 
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Institut fur Theoretische Physik, Freie Universitit Berlin, Amimallee 14. D-14195 Berlin. 
Ger”y 

Received 22 June 1994 

Abshact  Weights are computed for the Bethe vectors of an nsos-type model with periodic 
boundary conditions obeying Uq[sl(n)] (q = exp(in/r)) invariance. They are shown to be 
highest-weight vectors. The q-dimensions of the corresponding irreducible representations are 
obtained. 

In recent years, considerable progress has been made on the ‘quantum symmetry’ of 
integrable quantum chain models such as the XXZ Heisenberg model and its generalizations. 
In [l], we constructed an sl,(n) invariant RSOS-type model with periodic boundary 
conditions. The mode1 can be regarded as a generalization of the XXZ-model with twisted 
boundary conditions. Therefore, the representational analysis of Uq[sl(2)], as treated, for 
example, in [Z], has to be extended to cases of higher rank as was first considered in [3]. 

In the present paper, we prove, for this model, the highest-weight property of the Bethe 
states, calculate the weights and the q-dimensions of the representations and classify the 
irreducible representations. For the case of open boundary conditions, see, for example, 
[4-61. 

The model of [ l ]  is defined by the transfer matrix t = t(”), where 

The ‘doubled’ monodromy matrix is given by 

I“’ 0 ( x I -  dk)) = i=$) T ~ ’ ( x ,  (2) 

For the nested algebraic Bethe ansatz, in addition to I ( x )  = I ( n ) ( x ) ,  the monodromy 
matrices for all k < n are needed. The sl,(k) R-matrix is given by 

= (Roi , . . RON&) . (RN~o(xN~/x (~’ ) .  . . R,o(xl/x“’)). 

R(x) = xR -x - ’PR- ’P  
(3) R = E,, 8 E## + Eau 8 E m  + (4 - 4-l)  Ea# 8 E ~ u .  

U## e -B 
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The Yang-Baxter equation reads: 

M Karowski and A Zupietal 

R~z(y/x)?;(x)Rzi 'G.(y)  = 'G.(Y)RI~?;(X)RZI ( Y / x ) .  (4) 

The model is quantum-group invariant, i.e. the transfer matrix commutes with the generators 
of U,[s l (n) ] .  These are obtained from the monodromy matrices T ( x )  in the limits x to 0 
or 00 (up to normalizations) 

where a = q - q-I and the mabix W = diag( W I ,  , . . , W,) contains the Uq[gl (n) ]  Cartan 
elements. Analogously to equation (5 ) .  we introduce 

' T = ? . T  where ? = T;' (6) 

as a limit of ' T ( ' ) (x ,x (" ) )  for x + 0, where here, and in the following, operators without 
argument denote these limits for x -+ 0. 

We write the doubled monodromy matrices as k x k block-matrices of operators 

We also introduce the reference states @') with C [ ' ) ( x ) d k )  = 0. The eigenstates of the 
transfer matrix ~ ( x )  are the Bethe-ansatz states q = Y@) obtained by the nested procedure 

~ ( t )  = ~ ' k ) ( ~ ( k - - " ) ,  ,,E(&) ( x ( k - l )  ( k )  (k I )  ( k  = 2, , , , , n )  q(') = 1, (8) 

The sets of parameters x y )  = exp(i0:) - (n - k ) y / 2 )  (q = e'") fulfil the Bethe-ansatz 
equations: for j = 1, .  . . , I V ~  and k = 1,. . . , n - 1 

U, I m ~ ~ - ,  Nk., )Q 'U - - 

where, below, the wi = N,_i+l - N,-i will turn out to be the weights of state 0, i.e. the 
eigenvalues of the Wi's defined by equation (5). 

Theorem. The Bethe-ansatz states are highest-weight states, i.e. 

E i q = O  ( i = I ,  ..., n - 1 )  

a statement which was proved for the first time for rank z 1 within the context of the 
Hubbard model in 171. The sl,(n) symmetric case with open boundary conditions has been 
treated in [ 5 ] .  
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From equations ( 5 )  and (6), we have 
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- .  
7;' = = 4w' and ?;i=q2" 

and, finally, 

(19) 

with wi = Nn-j+l - N,,-t. (20) q 2 w , q  =q2w,q  

So, any Bethe-ansatz solution is characterized by a weight vector 

w = ( w I . .  .. , w,) = (N. - N . - I , .  . . , Nz - N I ,  N I )  (21) 

with the usual highest-weight condition 

W I  2 " '  > wn 2 0. (22) 

Here, N = N(") is the number of lattice sites and N G )  (k = n - 1, . . . , 1) is the number 
of roots in the kth Bethe-ansatz level. The highest-weight condition (22) may be shown as 
usual. The result (21) is consistent with the 'ice rule' fulfilled by the R-matrix (3). This 
means that each operator i3f)(x) reduces wi  and lifts w, by one. 

The q-dimension of a representation r with representation space V is obtained from 
the 'Markov trace' (see, for example, [3] and [9]) 

dim, JZ = & , ( ~ - E , I ( ~ , - ~ , ) ) ,  (23) 

As is well known for the case of q being a root of unity, the generators Ej and F, become 
nilpotent 

q = exp(ilr/r) (24) (Ej)' = ( F o r  = 0 r = n + 2, n + 3, . . . . 
A highest-weight module is equivalent to the corresponding module of sl(n), if this relation 
does not concern it. These representations still remain irreducible and will be called good. 

The other representations are called bad and, up to special irreducible cases with 
vanishing q-dimension, they are reducible but not decomposable. 

For the irreducible representations x,, with highest-weight vector w, equation (23) gives 

where [ x ] ,  = (4" -q-')/(q - q - ' )  is a q-number, a+ denotes the set of positive roots and 
g is the Weyl vector g = $ CoeQi 01. The good representations are characterized by positive 
q-dimensions. From equation (25), it follows that their weight patterns are restricted by 
their length 

w ,  - w, < r - n .  (26) 

The q-dimensions of bad representations vanish. 
It is an interesting question as to how these good representations are characterized in the 

language of the Bethe ansatz. In [6], it is shown for s1,(2) that these good representations 
are given by all Bethe-ansatz solutions with only positive parity shings (in the language of 
Takahashi [IO]) which are additionally restricted by their length. In a forthcoming paper, 
we will show how this classification extends to q-symmetries of higher rank. 
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